AMD FidelityFX Super Resolution : DLSS For The Masses

AMD’s FidelityFX Super Resolution (FSR) is the hot, new upscaling technology on the scene. It’s a DLSS alternative that isn’t quite as clever or capable, but it has much broader hardware support. If claims made by AMD and developers about its ease of implementation hold true, it could soon enjoy wider game support, too.

It’s available now on seven games, including Anno 1800, Godfall, and Evil Genius 2, and anyone with an AMD RX 400, 500, Vega, RX 5000, or 6000, can use it. Nvidia gamers aren’t left out in the cold, either, with anyone using a 10-series, 16-series, RTX 2000, or 3000 GPU also able to take advantage of it.

The game list might be short, but the hardware list is broad, and for some of us, that’s more than enough to hail FSR as a game-changing technology. But how does it actually perform? We booted up some games to find out.

How FSR works

FidelityFX Super Resolution is a two-pass, “shadow-based” upscaling technique that supports DirectX 11, DirectX 12, and Vulkan. It renders a game at a lower resolution than native and then performs an “edge reconstruction” upscaling technique, which AMD claims analyzes the images to find those edges, before rebuilding them at a higher fidelity.

This is then followed by a sharpening pass. Both take place after anti-aliasing and tone mapping, but before film grain, chromatic aberration, and other processing effects. Again, all that is very different from Nvidia’s more advanced machine learning upscaling.

The render resolution is determined by the FSR quality preset chosen, with developers having the option of applying additional sharpening to lower-resolution renders if they so choose.

For a 4K output, where native is 3840 x 2160, FSR Ultra Quality would render at 2954 x 1662. It would be 2560 x 1440 for Quality mode, 2259 x 1270 for Balanced mode, and 1920 x 1080 for performance mode.

Because FSR is a post-processing algorithm, it is designed to add a negligible amount of CPU overhead for each pass. The sharpening pass requires additional memory, but it is still far less demanding than native rendering. Because of those slight demands, however, FSR may see diminishing returns on lower-end hardware, with the greatest performance benefits found on higher-end GPUs — especially RX 5000 and 6000, for which it has been specifically optimized. AMD claims FSR also shows the least quality degradation at 4K, though is usable at 1080p or even lower resolutions.

AMD stressed in its release materials and briefings that this is very much the first generation of FSR and it may see improvements in the future. They could take the form of native resolution image buffers, or wholly new upscaling technologies entirely. That has lead to some speculation that in the future AMD may introduce its own form of machine learning-based upscaling, akin to Nvidia’s DLSS.

Performance

To see how FSR actually performs in the wild, we ran a number of benchmarks for the games we had available, taking short snippets of gameplay and tracking the average, minimum, and lowest frame rates while each FSR quality mode was enabled, then comparing them to native rendering.

We tested five games in total, three with an AMD card and two with an Nvidia one. We tested Godfall, Kingshunt, and The Riftbreaker using an AMD rig and Terminator: Resistance and Anno 1800 with an Nvidia rig. Here are the two test platforms:

AMD test rig

  • AMD Ryzen 3700X
  • RX 5700 XT under AIO water cooler running at 2,050MHz
  • 16GB Corsair DDR4 3,200MHz
  • Samsung 850 Evo 512GB

Nvidia test rig

  • Intel Core i9-10900K
  • Nvidia RTX 2080
  • 32GB G.Skill DDR4 3,200MHz
  • Crucial MX500 2TB

We used MSI Afterburner/Rivatuner for test results. All games were run at 1440p resolution, set to their maximum settings with no motion blur, no V-Sync, no dynamic resolution scaling, and no Contrast Adaptive Sharpening (where it was available).

Godfall

OffUltra QualityQualityBalancedPerformance
Average FPS79103117130143
Minimum FPS658799111121
1% low FPS638292101108
0.1% low FPS2348287730

Arguably the most flagship of the limited FSR launch library, it’s no surprise that AMD chose Godfall for its Computex demonstration of what FSR could do. It’s a gorgeous-looking game, and it performs well, even on far-from-cutting-edge hardware. Performance advances with FSR enabled were impressive, with a tangible difference when turning on Ultra Quality mode compared to native. The game feels smoother and more responsive. There is a minor blurring in foliage, and some small sharpening artifacts can be seen in reflections, but the most obvious change between Ultra Quality and native is the improvement in the fluidity of the gameplay, especially during combat, where background details aren’t so easily scrutinized.

Quality mode introduces more noticeable sharpening artifacts, with some improvement to the feel of the game and the smoothness of combat animations. Balanced brings with it a severe blur, which is hard to ignore, across most of the game’s textures and models. Performance mode makes the game feel its most fluid, but the visual quality sacrifice is severe, with very noticeable blur on everything, a substantial loss of texture detail, and jarring sharpening artifacts.

For peak visual clarity, native (perhaps with CAS enabled) is still the absolute best, but Ultra Quality gets very, very close and the performance improvement that comes with it feels like a worthy trade for the minor artifacts. Other modes are less easy to recommend, though there are probably some who would be happy with Quality, especially if limited GPU power means it would allow turning on specific visual features that would otherwise be too taxing.

Kingshunt

OffUltra QualityQualityBalancedPerformance
Average FPS77105116125127
Minimum FPS75101106114121
1% low FPS6985292977
0.1% low FPS2931282827

Kingshunt features more aggressive sharpening than Godfall, and if you like a crisper picture, you’d probably find Ultra Quality a better-looking experience than native, which has a slightly fuzzier aesthetic without FSR. The performance boost at Ultra Quality is significant, too, and when you factor in the competitive nature of the game, enabling FSR could help reduce input lag and improve your competitive advantage, albeit by a small margin.

Quality mode also looks solid, especially when in motion, though the sharpening artifacts do become more apparent, and it’s noticeably not as good-looking as native or Ultra Quality. The performance benefit is negligible, making it a harder sell.

As with Godfall, both Balanced and Performance modes look significantly worse, with some very clear sharpness artifacts and muddy blurring that tanks the look and feel of the game, even if it becomes noticeably smoother to play on higher refresh rate displays. For the ultracompetitive, it may be worth using these modes for additional performance, but simply rendering at a lower native resolution may be preferable to the extreme artifacts introduced.

The Riftbreaker

OffUltra QualityQualityBalancedPerformance
Average FPS120148166181195
Minimum FPS110138156170184
1% low FPS108135142201173
0.1% low FPS2526282828

The least intense of the games we tested as part of this review, The Riftbreaker shows the least overall benefit from FSR, although its perspective also makes the introduction of visual artifacts less obvious when in motion. However, where the sharpening and upscaling offset the reduced input resolution with the higher-quality modes in the other games, that wasn’t the case with The Riftbreaker. Here, even Ultra Quality exhibited a noticeable, if slight, blurring. Considering the already high frame rate of native, it’s a harder sell with this hardware configuration.

Although Quality does display some of the aggressive sharpening artifacts that are a part of the FSR experience, they’re not very noticeable during gameplay, and in fact, it’s hard to tell the difference between it and Ultra Quality. That makes Quality mode arguably the more attractive, if performance enhancement is what you’re after.

Balanced and Performance suffer from the same problems as other games, with extreme blurring that diminishes the visuals enough that they’re not recommendable. The only real use for them would be if you’re playing on hardware that just can’t handle the game, and you need that edge